Decentralised Sliding Mode Load Frequency Control for an Interconnected Power System with Uncertainties and Nonlinearities
نویسندگان
چکیده
---------------------------------------------------------------------***--------------------------------------------------------------------Abstract – In this paper decentralized sliding mode load frequency control is constructed for multi area power system with matched and mismatched parameter uncertainties. The proportional and integral switching surface is designed for each area to enhance the dynamic performance through reducing the chattering and overshoot during reaching phase. The controller design process has been theoretically proved based on Lyapunov stability theorem. Robustness of the proposed controller is illustrated by implementing it on the three area interconnected power system.
منابع مشابه
Application of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کاملLoad Frequency Control in Two Area Power System Using Sliding Mode Control
In this article, the sliding mode control of frequency load control of power systems is studied. The study areaconsists of a system of water and heat. First, a mathematical model of the proposed system disturbances ismade and then sliding control mode for frequency load control is provided. By the system simulation andsliding mode control, it can be shown that the damping of oscillations is wel...
متن کاملLoad Frequency Control for a Two-area Interconnected Power System by Using Sliding Mode Controller
This paper presents the usage of sliding mode Control algorithm for the load frequency control in power systems. A sliding mode based load frequency controller is applied to a two-area power system. Non-reheat and reheat Thermal turbines are distributed in these two areas respectively. The nonlinearities such as governor dead band and generation rate constraint are included in the block diagram...
متن کاملLoad Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کامل